The Hoggatt-Bergum Conjecture on $D(-1)$-Triples $\{F_{2k+1}, F_{2k+3}, F_{2k+5}\}$ and Integer Points on the Attached Elliptic Curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proof of the Hoggatt-Bergum conjecture

It is proved that if k and d are positive integers such that the product of any two distinct elements of the set {F2k, F2k+2, F2k+4, d} increased by 1 is a perfect square, than d has to be 4F2k+1F2k+2F2k+3. This is a generalization of the theorem of Baker and Davenport for k = 1.

متن کامل

S-integer Points on Elliptic Curves

We give a quantitative bound for the number of S-integral points on an elliptic curve over a number field K in terms of the number of primes dividing the denominator of the j-invariant, the degree [K : Q], and the number of primes in S. Let K be a number field of degree d and MK the set of places of K. Let E/K be an elliptic curve with quasi-minimal Weierstrass equation E : y = x +Ax+B. If ∆ = ...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Integer points on two families of elliptic curves

In this paper we find all the integer points on elliptic curves induced by the Diophantine triples {k − 1, k + 1, 16k − 4k} and {k − 1, k + 1, 64k− 48k + 8k} that have either rank two or 2 ≤ k ≤ 10000 (with one possible exception).

متن کامل

Elliptic Nets and Points on Elliptic Curves

(2) hn divides hm whenever n divides m. They have attracted number theoretical and combinatorial interest as some of the simplest nonlinear recurrence sequences (see [3] for references), but for us their interest lives in the underlying geometry: Ward demonstrates that an elliptic divisibility sequence arises from any choice of elliptic curve over Q and rational point on that curve. Theorem 1 (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2009

ISSN: 0035-7596

DOI: 10.1216/rmj-2009-39-6-1907